Objective: Write proofs to prove that lines are parallel

- In the figure below (left), can we assume that $j \| k$? \qquad Why? \qquad
- In the figure below (right), if $\angle 1 \cong \angle 2$, then is $a \| b$? \qquad Why? \qquad

Recall that a hypothetical statement is a statement with a hypothesis and a conclusion, e.g., "if you live in Thousand Oaks, then you live in California." The part that follows "if" is called a hypothesis; the part that follows the "then" part is called the conclusion. Whenever we flip the hypothesis and the conclusion, we create something called a \qquad Sometimes the converse is true, but other times it is not. For example, the converse of the statement above would be "if you live in California, then you live in Thousand Oaks", which would not necessarily be true. Postulates and theorems have converses, as well, and they can be used as reasons for proofs.

In this lesson, we will be proving that lines are parallel by using the following converses:

Corresponding Angles Converse Post.	If corresponding angles are \qquad then the lines are \qquad .
Alternate Interior Angles Converse Thm.	If alternate interior angles are \qquad then the lines are \qquad .
Alternate Exterior Angles Converse Thm.	If alternate exterior angles are \qquad then the lines are parallel.
Consecutive Interior Angles Converse Thm.	If consecutive interior angles are \qquad then the lines are parallel.
	If two lines are perpendicular to the same line, then they are parallel.

IMPORTANT: Use these when you are trying to prove that lines are parallel!
Example and practice 1: Which lines are parallel? State the reasons.

A)
C)

B)

D)

Example 2: Complete the proof below
Given: $\angle 5 \cong \angle 6$ and $\angle 6 \cong \angle 4$
Prove: $b \| c$

Practice 2: Complete the proofs below
A) Given: $\angle 1 \cong \angle 2, \angle 1 \cong \angle 3$

Prove: $o \| k$

Statement	Reason
1.	1.
2.	2.
3.	3.

B) Given: $m \perp p$ and $m \perp q$

Prove: $p \| q$

Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.

C) GIVEN: $g \| h, \angle 1 \cong \angle 2$

PROVE: $p \| r$

Statements	Reasons		
1. $g \\| h, \angle 1 \cong \angle 2$	1.		
2. $\angle 1 \cong \angle 3$	2.		
3. $\angle 2 \cong \angle 3$	3.		
4. $p \\| r$	4.		

