Focus on	Geometry
----------	----------

Review:

Whenever we have two lines cut by a transversal, what types of angles are formed?

Use the diagram to the right, and name the pairs of angles listed:	ĸ
1) $\angle 1$ and $\angle 4$; $\angle 2$ and $\angle 3$; $\angle 6$ and $\angle 7$; $\angle 5$ and $\angle 8$:	$ \xrightarrow{12} 34$
2) $\angle 4$ and $\angle 5$; $\angle 3$ and $\angle 6$:	← <u>56</u> 7¥8
3) $\angle 1$ and $\angle 5$; $\angle 2$ and $\angle 6$; $\angle 3$ and $\angle 7$; $\angle 4$ and $\angle 8$:	
4) $\angle 1$ and $\angle 8$; $\angle 2$ and $\angle 7$:	
5) $\angle 3$ and $\angle 5$; $\angle 4$ and $\angle 6$:	

When the two lines are parallel, you get some special angle relationships:

Corresponding Angles	If 2 parallel lines are cut by a transversal,
Postulate	then the pairs of <i>corresponding angles</i> are
Alternate Interior Angles	If 2 parallel lines are cut by a transversal,
Theorem	then the pairs of <i>alternate interior angles</i> are
Alternate Exterior Angles	If 2 parallel lines are cut by a transversal,
Theorem	then the pairs of <i>alternate exterior angles</i> are
Consecutive Interior	If 2 parallel lines are cut by a transversal,
Angles Theorem	then the pairs of <i>same side interior</i> angles are
Perpendicular	If a line is \perp to one of the 2 parallel lines,
Transversal Theorem	then it is also \perp to the other line.

Examples and practice 1: Identify the postulate or theorem that makes each statement true.

1. $\angle 2 \cong \angle 7$	
2. $\angle 4 \& \angle 6$ are supplementary	$ \longrightarrow \frac{1/2'}{3/4} $
3. ∠1 ≅ ∠5	$\leftrightarrow \frac{56}{7/8} \rightarrow$
4. $\angle 3 \cong \angle 6$	<i>Z</i>
5. ∠5 ≅ ∠8	1
 6. ∠7 & ∠8 are supplementary 7. If line p and m are and k m, then k p 	$ \longrightarrow p \\ \longleftarrow p \\ \longleftarrow m$
	k

Example 2: Complete the proof below

1. Given: a b; c d

Prove: $\angle 1 \cong \angle 13$

Statements	Reasons
1. a b ; c d	1.
2. ∠1 ≅ ∠12	2.
3. ∠12 ≅ ∠1 3	3.
4. ∠1≅∠13	4.

Practice 2: Complete the proof below:

2. Given: a ∎ b

Prove: $m \angle 9 + m \angle 14 = 180^\circ$

Statements	Reasons	
1. a∎b	1.	
2. <i>m</i> ∠9 + <i>m</i> ∠11 = 180°	2.	
3. <i>m</i> ∠11 = <i>m</i> ∠14	3.	
4. $m \angle 9 + m \angle 14 = 180^{\circ}$	4.	

Example 3: Complete the proof below:

2

Reasons

6N7: Proofs with parallel lines

Practice 6: Complete the proof below:

