Review:

Whenever we have two lines cut by a transversal, what types of angles are formed?

Use the diagram to the right, and name the pairs of angles listed:

1) $\angle 1$ and $\angle 4 ; \angle 2$ and $\angle 3 ; \angle 6$ and $\angle 7 ; \angle 5$ and $\angle 8$: \qquad
2) $\angle 4$ and $\angle 5 ; \angle 3$ and $\angle 6$: \qquad

3) $\angle 1$ and $\angle 5 ; \angle 2$ and $\angle 6 ; \angle 3$ and $\angle 7 ; \angle 4$ and $\angle 8$: \qquad
4) $\angle 1$ and $\angle 8 ; \angle 2$ and $\angle 7$: \qquad
5) $\angle 3$ and $\angle 5 ; \angle 4$ and $\angle 6$:

When the two lines are parallel, you get some special angle relationships:

Corresponding Angles Postulate	If 2 parallel lines are cut by a transversal, then the pairs of corresponding angles are
Alternate Interior Angles Theorem	If 2 parallel lines are cut by a transversal, then the pairs of alternate interior angles are
Alternate Exterior Angles Theorem	If 2 parallel lines are cut by a transversal, then the pairs of alternate exterior angles are
Consecutive Interior Angles Theorem	If 2 parallel lines are cut by a transversal, then the pairs of same side interior angles are
Perpendicular Transversal Theorem	If a line is \perp to one of the 2 parallel lines, then it is also \perp to the other line.

Examples and practice 1: Identify the postulate or theorem that makes each statement true.

1. $\angle 2 \cong \angle 7$ \qquad
2. $\angle 4 \& \angle 6$ are supplementary
3. $\angle 1 \cong \angle 5$ \qquad
4. $\angle 3 \cong \angle 6$ \qquad

5. $\angle 5 \cong \angle 8$ \qquad
6. $\angle 7 \& \angle 8$ are supplementary \qquad
7. If line p and m are $\|$ and $\mathrm{k} \perp \mathrm{m}$, then $\mathrm{k} \perp \mathrm{p}$

Example 2: Complete the proof below

1. Given: $a \backslash b ; c \backslash d$

Prove: $\angle 1 \cong \angle 13$

Statements	Reasons
1. $a \mathbf{I} ; c \backslash d$	1.
2. $\angle 1 \cong \angle 12$	2.
3. $\angle 12 \cong \angle 13$	3.
4. $\angle 1 \cong \angle 13$	4.

Practice 2: Complete the proof below:
2. Given: $a \backslash b$

Prove: $m \angle 9+m \angle 14=180^{\circ}$

Statements	Reasons
1. $a \backslash b$	1.
2. $m \angle 9+m \angle 11=180^{\circ}$	2.
3. $m \angle 11=m \angle 14$	3.
4. $m \angle 9+m \angle 14=180^{\circ}$	4.

Example 3: Complete the proof below:
4. Given: $G \| h ; \angle 1 \cong \angle 5$

Prove: $\angle 5 \cong \angle 3$
Statements
Reasons

Practice 3: Complete the proofs below:
5. Given: $g \| h ; \angle 6 \& \angle 3$ are supplementary

Prove: $\angle 6 \cong \angle 2$
Statements
Reasons

6. Given: $\overline{C D} \backslash \overline{A B} ; \angle 2 \cong \angle 1$

Prove: $\angle 2 \cong \angle 3$
Statements
Reasons

Practice 4: Complete the proofs below:

Given: $j \| k$
Prove: $\Varangle 2 \cong \Varangle 7$

1. $j|\mid k$
2. $\Varangle 2 \cong \Varangle 4$
3. $\Varangle 4 \cong \Varangle 7$
4. $\Varangle 2 \cong \Varangle 7$
5. \qquad
6. \qquad
7. \qquad
8. \qquad

Practice 5: Complete the proof below:

Given: $j \| k$

Prove: $\Varangle 1$ and $\Varangle 7$ are supp \Varangle s

1. $j \| k$
2. $\Varangle 1$ and $\Varangle 4$ are supp \Varangle s
3. $m \npreceq 1+m \nsucceq 4=180$
4. $m \npreceq 4=m \not \subset 7$
5. $m \npreceq 1+m \nsucceq 7=180$
6. $\Varangle 1$ and $\Varangle 7$ are supp $\Varangle s$
7. \qquad
8. \qquad
9. \qquad
10. \qquad
11. \qquad
12. \qquad

Practice 6: Complete the proof below:

$m \not 44=m \measuredangle 5$

Prove: $m \npreceq 1=m \npreceq 2$

1. $\overline{A S} \| \overline{B T}$
2. $m \nleftarrow 2=m \nleftarrow 5$
3. $m \npreceq 4=m \nleftarrow 5$
4. $m \nleftarrow 2=m \nleftarrow 4$
5. $m \npreceq 1=m \nleftarrow 4$
6. $m \nrightarrow 1=m \nleftarrow 2$
7. \qquad
8. \qquad
9. \qquad
10. \qquad
11. \qquad
12. \qquad
