Objectives:

To prove triangles are congruent and to use CPCTC to prove that corresponding parts of congruent triangles are congruent

Review:

What do you call angles 1 and 5 below, and why? \qquad
What are the other pairs of angles that have that same characteristic? \qquad

The word \qquad means "able to be matched"; or, in our case, "matching". If we were to lay angle 1 on top of angle 5, they would match in location. We can do something similar with triangles, as, just like the angles above, we have corresponding parts in triangles.

Example 1: Name the corresponding angles and sides of the triangles below:
A)

B)

C)

Practice 1: Name the corresponding angles and sides of the triangles below:
A)

B)

C)

What happens when the corresponding angles are formed by a pair of parallel lines cut by a transversal?

Because angles 1 and 5 have the same size and shape, they are \qquad .

Example 2: List the corresponding angles and sides of the following pairs of congruent triangles:
A)

C)

Practice 2: List the corresponding angles and sides of the following pairs of congruent triangles.
A)

B)

C)

So, what happens when the corresponding parts belong to congruent triangles?

Remember that, when we have two congruent triangles, we can identify the corresponding parts just by looking at the congruence statement.

Example 3: List the corresponding congruent parts of the congruent triangles below:
A) $\Delta \mathrm{RAT} \cong \triangle \mathrm{PIG}$
B) $\Delta \mathrm{LBC} \cong \triangle \mathrm{BYU}$

Practice 3: List the corresponding congruent parts of the congruent triangles below:
A) $\Delta \mathrm{USC} \cong \Delta \mathrm{MIT}$
B) $\triangle \mathrm{HOT} \cong \triangle \mathrm{SIP}$

What we have been using is a theorem abbreviated as \qquad , which stands for . In order for us to be able to use this theorem, we first have to prove that the pair of triangles involved in the theorem are

Recall: What are the five triangle congruence postulates?
Example 4: Complete the proof below:
Given: $\overline{S A} \cong \overline{S D}, \overline{S B} \cong \overline{S C}$
Prove: $\angle \mathrm{A} \cong \angle \mathrm{D}$

$\overline{S A} \cong \overline{S D}, \overline{S B} \cong \overline{S C}$	
$\angle \mathrm{BSA} \cong \angle \mathrm{CSD}$	
$\triangle \mathrm{BSA} \cong \triangle \mathrm{CSD}$	
$\angle \mathrm{A} \cong \angle \mathrm{D}$	

Practice 4: Complete the proof below: Given: A is the midpoint of $\overline{B C}$ and $\overline{T D}$

Prove: $\angle \mathrm{D} \cong \angle \mathrm{T}$

A is the midpoint of $\overline{B C}$ and $\overline{T D}$	
$\overline{A B} \cong \overline{A C}$ and $\overline{A T} \cong \overline{A D}$	
$\angle \mathrm{BAD} \cong \angle \mathrm{CAT}$	
$\triangle \mathrm{BAD} \cong \triangle \mathrm{CAT}$	
$\angle \mathrm{D} \cong \angle \mathrm{T}$	

Practice 5: Complete the proof below
Given: Y is the midpoint of $\overline{H U}, \angle E \cong \angle O, \overline{Y E} \square \overline{U O}$
Prove: $\angle Y H E \cong \angle U Y O$

Y is the midpoint of $\overline{H U}, \angle E \cong \angle O$,	
$\overline{Y E} \square \overline{U O}$	
$\overline{Y H} \cong \overline{Y U}$	
$\angle \mathrm{HYE} \cong \angle \mathrm{YUO}$	
$\triangle \mathrm{HEY} \cong \triangle \mathrm{YOU}$	
$\angle Y H E \cong \angle U Y O$	

Example 4: Complete the proof below:
Given: K is the midpoint of $J M, \angle \mathrm{~J} \cong \angle \mathrm{M}$
Prove: $\angle \mathrm{N} \cong \angle \mathrm{L}$

K is the midpoint of $\overline{J M}$	
$\angle \mathrm{~J} \cong \angle \mathrm{M}$	

Practice 6: Complete the proof below:
Given: A is the midpoint of $\overline{L M}, \overline{B L} \cong \overline{B M}$
Prove: $\angle \mathrm{L} \cong \angle \mathrm{M}$

A is the midpoint of $\overline{L M}, \overline{B L} \cong \overline{B M}$	

Write your own acronym to remember CPCTC:

C
\mathbf{P}
C
T
C \qquad

