Focus on Geometry	6N6: CPCTC	Page 1 of 4
		- B

Objectives:

To prove triangles are congruent and to use CPCTC to prove that corresponding parts of congruent triangles are congruent

Review:

What do you call angles 1 and 5 below, and why? ______ What are the other pairs of angles that have that same characteristic? _____

The word ______ means "able to be matched"; or, in our case, "matching". If we were to lay angle 1 on top of angle 5, they would match in location. We can do something similar with triangles, as, just like the angles above, we have corresponding parts in triangles.

Example 1: Name the corresponding angles and sides of the triangles below:

Practice 1: Name the corresponding angles and sides of the triangles below:

6N6: CPCTC

Page 2 of 4

What happens when the corresponding angles are formed by a pair of parallel lines cut by a transversal?

Because angles 1 and 5 have the same size and shape, they are ______.

Example 2: List the corresponding angles and sides of the following pairs of congruent triangles:

Practice 2: List the corresponding angles and sides of the following pairs of congruent triangles.

So, what happens when the corresponding parts belong to congruent triangles?

Remember that, when we have two congruent triangles, we can identify the corresponding parts just by looking at the congruence statement.

Example 3: List the corresponding congruent parts of the congruent triangles below: A) $\Delta RAT \cong \Delta PIG$ B) $\Delta LBC \cong \Delta BYU$

Drasting 2. I hat 4	try	6N6: CPCTC	Page 3 of
A) $\Delta USC \cong \Delta MI'$	he corresponding congruent Γ	t parts of the congruent triangle B) $\Delta HOT \cong \Delta SIP$	es below:
What we have be	en using is a theorem abbre	viated as	, which stands for
for us to be able t	to use this theorem, we first	have to prove that the pair of t	riangles involved in the theorem are
Recall: What are	the five triangle congruence	e postulates?	
Example 4: Corr	plete the proof below:	B S	C
Given: $\overline{SA} \cong \overline{SD}$, Prove: $\angle A \cong \angle D$	$\overline{SB} \cong \overline{SC}$	A	D
$\overline{SA} \cong \overline{SD}$, $\overline{SB} \cong \overline{S}$	c		
$\angle BSA \cong \angle CSD$			
$\Delta \operatorname{BSA} \cong \Delta \operatorname{CSD}$			
$\angle A \cong \angle D$			
	$\frac{T}{T}$	c c	$1 \text{ for } \mathcal{L} \mathcal{D} = \mathcal{L} 1$
A is the n	1		
A is the n $\overline{AB} \cong \overline{AC}$	and $\overline{AT} \cong \overline{AD}$		
A is the n $\overline{AB} \cong \overline{AC}$ $\angle BAD \cong$	and $\overline{AT} \cong \overline{AD}$ $\angle CAT$		
A is the n $AB \cong AC$ $\angle BAD \cong$ $\Delta BAD \cong$	and $\overline{AT} \cong \overline{AD}$ $\angle CAT$ $\triangle CAT$		
A is the n $AB \cong AC$ $\angle BAD \cong$ $\Delta BAD \cong$ $\angle D \cong \angle T$	and $\overline{AT} \cong \overline{AD}$ $\angle CAT$ ΔCAT		
A is the n $AB \cong AC$ $\angle BAD \cong$ $\Delta BAD \cong$ $\angle D \cong \angle T$ Practice 5: Comp Given: Y is the m Prove: $\angle YHE \cong AC$	and $\overline{AT} \cong \overline{AD}$ $\angle CAT$ ΔCAT plete the proof below nidpoint of \overline{HU} , $\angle E \cong \angle O$ $\underline{\angle UYO}$, $\overline{YE} \square \overline{UO}$	E E
A is the n $A = AC$ $\angle BAD \cong$ $\angle BAD \cong$ $\angle D \cong \angle T$ Practice 5: Comp Given: Y is the m Prove: $\angle YHE \cong \angle$ Y is the midpoint $\overline{YE} \Box \overline{UO}$	and $\overline{AT} \cong \overline{AD}$ $\angle CAT$ ΔCAT plete the proof below hidpoint of \overline{HU} , $\angle E \cong \angle O$ $\angle UYO$ int of \overline{HU} , $\angle E \cong \angle O$,	, $\overline{YE} \square \overline{UO}$	E ≥0
A is the n A = AC $\angle BAD \cong$ $\angle BAD \cong$ $\angle D \cong \angle T$ Practice 5: Comp Given: Y is the m Prove: $\angle YHE \cong \angle$ Y is the midpoint $\overline{YE} \Box UO$ $\overline{YH} \cong \overline{YU}$	and $\overline{AT} \cong \overline{AD}$ $\angle CAT$ ΔCAT plete the proof below nidpoint of \overline{HU} , $\angle E \cong \angle O$ $\underline{\angle UYO}$ int of \overline{HU} , $\angle E \cong \angle O$,	, $\overline{YE} \square \overline{UO}$	E
A is the n $A = AC$ $\angle BAD \cong$ $\angle BAD \cong$ $\angle D \cong \angle T$ $ABAD \cong$ $\angle D \cong \angle T$ Practice 5: Comp Given: Y is the m Prove: $\angle YHE \cong \angle T$ $Y = UO$ $\overline{YH} \cong \overline{YU}$ $\angle HYE \cong \angle YU$	and $\overline{AT} \cong \overline{AD}$ $\angle CAT$ ΔCAT plete the proof below nidpoint of \overline{HU} , $\angle E \cong \angle O$ $\underline{\angle UYO}$ int of \overline{HU} , $\angle E \cong \angle O$, O	, $\overline{YE} \square \overline{UO}$	E
A is the n $AB \cong AC$ $\angle BAD \cong$ $\Delta BAD \cong$ $\angle D \cong \angle T$ Practice 5: Comp Given: Y is the m Prove: $\angle YHE \cong \angle$ Y is the midpoint $\overline{YE} \square \overline{UO}$ $\overline{YH} \cong \overline{YU}$ $\angle HYE \cong \angle YU$ $\Delta HEY \cong \Delta YOU$	and $\overline{AT} \cong \overline{AD}$ $\angle CAT$ ΔCAT plete the proof below nidpoint of \overline{HU} , $\angle E \cong \angle O$ $\underline{\angle UYO}$ int of \overline{HU} , $\angle E \cong \angle O$, \underline{O} J		E

Focus on Geometry	6N6: CPCTC	Page 4 of
Example 4: Complete the proof below: Given: K is the midpoint of \overline{JM} , $\angle J \cong \angle M$ Prove: $\angle N \cong \angle L$	N K L	
K is the midpoint of \overline{JM}		
$\angle J \cong \angle M$		

Practice 6: Complete the proof below:

Given: A is the midpoint of \overline{LM} , $\overline{BL} \cong \overline{BM}$ Prove: $\angle L \cong \angle M$

	L Z M
A is the midpoint of \overline{LM} , $\overline{BL} \approx \overline{BM}$	

Write your own acronym to remember CPCTC:

C _	
P _	
C_	
T_	
C	
_	