Angles and segment measures are real numbers; therefore, we can do operations with them (add, subtract, multiply, divide) and apply equality properties to them. We can only do that, however, when we are using their
\qquad not the fact that they are congruent (i.e., not when we have a \qquad sign).

Example 1: Can we apply operations to the following statements?
A) $\mathrm{RT}=\mathrm{PQ}$ \qquad B) $\overline{H I} \cong \overline{K U}$ \qquad C) $\mathrm{m} \angle \mathrm{ABC}=\mathrm{m} \angle \mathrm{DEF}$ \qquad D)
$\angle \mathrm{A} \cong \angle \mathrm{B}=$ \qquad
Practice 1: Can we perform operations and/or apply equality properties to the following statements?
A) $\overline{Q R} \cong \overline{S T}$ \qquad B) $\mathrm{m} \angle \mathrm{K}>\mathrm{m} \angle \mathrm{T}$ \qquad C) $P Q=M L$ \qquad D) $\angle \mathrm{CAT} \cong \angle \mathrm{DOG}$

If we need to go between congruency and equality, though, we can use the definition of congruency, which states that If $\mathrm{AB}=\mathrm{XY}$, then \qquad —.

Example 2: If we use the definition of congruency on the following statements, what would be the new statement?
A) $\mathrm{YU}=\mathrm{MQ}$
B) $m \angle \mathrm{~N}=\mathrm{m} \angle \mathrm{H}$ \qquad C) $\overline{A M} \cong \overline{M B}$
D) $\angle \mathrm{M} \cong \angle \mathrm{Y}=$ \qquad E) $\mathrm{ML}>\mathrm{ST}$ \qquad

Practice 2: If we use the definition of congruency on the following statements, what would be the new statement?
A) $\overline{Q R} \cong \overline{S T}$
B) $m \angle K \leq m \angle T$ \qquad C) $P Q=M L$ \qquad
D) $\angle \mathrm{CAT} \cong \angle \mathrm{DOG}$ \qquad E) $m \angle K>m \angle T$ \qquad

When we are just saying what something is, and it is not given, we use definitions. When performing operations and applying equality properties to angle and segment measures, we work mostly with definitions and postulates. Theorems are used when the segments and angles are already congruent. For example, if we are told that a point is the midpoint of a segment, and we are going to perform operations with the measures of those segments, then we would use the of midpoint. If we are told that the point is the midpoint, and we just want to use the fact that each of the two halves are congruent, then we would use the midpoint \qquad .

Here are some definitions and postulates that frequently appear in proofs dealing with measures:
Definition of a right angle: If an angle is a right angle, then its measure is \qquad _.
Definition of complementary angles: If two angles are complementary, then their sum is \qquad .
Definition of supplementary angles: If two angles are supplementary, then their sum is \qquad .
Definition of perpendicular lines: If two lines are perpendicular, then they form \qquad angles.

Definition of Congruency: If $\overline{Q R} \cong \overline{S T}$, then \qquad
Definition of a Midpoint: If M is the midpoint of $\overline{A B}$, then \qquad
Segment Addition Postulate: If K lies between J and L, then \qquad
Definition of Congruency If $A B=X Y$, then \qquad
Definition of Supplementary Angles: If $\angle \mathrm{X}$ and $\angle \mathrm{Y}$ are supplementary, then \qquad $+$ \qquad $=$ \qquad
Definition of Complementary Angles: If $\angle \mathrm{X}$ and $\angle \mathrm{Y}$ are complementary, then \qquad $+\ldots=$ \qquad
Definition of a Right Angle: If $\angle \mathrm{K}$ is a right angle, then \qquad $=$ \qquad
Definition of Congruency: If $\angle \mathrm{P} \cong \angle \mathrm{D}$, then \qquad = \qquad
Angle Addition Postulate: If R is in the interior of $\angle \mathrm{PQS}$, then \qquad $+$ \qquad $=$ \qquad

Overall, if you want to state that two angles or segments are congruent, you would use a theorem. If, after that, you need to perform operations with the angles or segments measures, then you would use the definition of congruency to go from congruence to measures. After that, you can apply the equality properties (i.e., addition, subtraction, multiplication, division, reflexive, symmetric, transitive, substitution, simplification)

Example 3: Complete the proof below:
Given: M is the midpoint of $\overline{A B} \quad$ Prove: $\overline{A M} \cong \overline{M B}$

Statements	Reasons
1.	1.
2.	2.
3.	3.

Example 4: Complete the proof below:
Given: $\overline{J K} \cong \overline{Q T} ; \mathrm{JK}=3 \mathrm{x}+5 ; \mathrm{QT}=2 \mathrm{x}+8$
Prove: $\mathrm{x}=3$

Statement	Reason
1. $\overline{J K} \cong \overline{Q T} ; \mathrm{JK}=3 \mathrm{x}+5 ; \mathrm{QT}=2 \mathrm{x}+8$	1.
2. $\mathrm{JK}=\mathrm{QT}$	2.
3. $3 \mathrm{x}+5=2 \mathrm{x}+8$	3.
4. $\mathrm{x}+5=8$	4.
5. $\mathrm{x}=3$	5.

Practice 3: Given: M is the midpoint of $\overline{O G} ; \mathrm{OM}=\mathrm{x}+4 ; \mathrm{MG}=5(3 \mathrm{x}-2)$
Prove: $\mathrm{x}=1$
Draw a sketch:

Statement	Answers	Reason
1. M is the midpoint of $\overline{O G} ;$ $\mathrm{OM}=\mathrm{x}+4 ; \mathrm{MG}=5(3 \mathrm{x}-2)$		A. Substitution
2. $\mathrm{OM}=\mathrm{MG}$		B. Subtraction Prop.
3. $\mathrm{x}+4=5(3 \mathrm{x}-2)$		C. Division Prop.
$4 . \mathrm{x}+4=15 \mathrm{x}-10$		D. Given
5. $-14 \mathrm{x}+4=-10$		E. Distributive Prop.
6. $-14 \mathrm{x}=-14$		F. Subtraction Prop.
7. $\quad \mathrm{x}=1$		G. Definition of a midpoint

Practice 4: \quad Given: $\mathrm{PQ}=\mathrm{RS}$ Prove: $\mathrm{PR}=\mathrm{QS}$

Statement	Reason
$1 . \mathrm{PQ}=\mathrm{RS}$	1.
$2 . \mathrm{PQ}+\mathrm{QR}=\mathrm{RS}+\mathrm{QR}$	2.
$3 . \mathrm{PQ}+\mathrm{QR}=\mathrm{PR}$ $\mathrm{RS}+\mathrm{QR}=\mathrm{QS}$	3.
$4 . \mathrm{PR}=\mathrm{QS}$	4.

Example 5: \quad Given: $\angle \mathrm{O}$ and $\angle \mathrm{K}$ are supplementary
Prove: $x=25$
$\mathrm{m} \angle \mathrm{O}=(4 \mathrm{x}+10)^{\circ} ; \quad \mathrm{m} \angle \mathrm{K}=(3 \mathrm{x}-5)^{\circ}$

Statement	Reason
1. $\angle \mathrm{O}$ and $\angle \mathrm{K}$ are supplementary $\mathrm{m} \angle \mathrm{O}=(4 \mathrm{x}+10)^{\circ} ; \mathrm{m} \angle \mathrm{K}=(3 \mathrm{x}-5)^{\circ}$	1.
2. $\mathrm{m} \angle \mathrm{O}+\mathrm{m} \angle \mathrm{K}=180^{\circ}$	2.
3. $(4 \mathrm{x}+10)+(3 \mathrm{x}-5)=180$	3.
4. $7 \mathrm{x}+5=180$	4.
$5 . \quad 7 \mathrm{x}=175$	5.
$6 . \quad \mathrm{x}=25$	6.

Practice 5: \quad Given: R in the interior of $\angle \mathrm{PQS}$; $\mathrm{m} \angle \mathrm{PQS}=70^{\circ} ; \mathrm{m} \angle \mathrm{PQR}=(14 \mathrm{x}-44)^{\circ} ; \mathrm{m} \angle \mathrm{RQS}=5 \mathrm{x}^{\circ} \quad$ Prove: $\mathrm{x}=6$

Sketch:

Statement	Answer	Reason
1. R in the interior of $\angle \mathrm{PQS} ; \mathrm{m} \angle \mathrm{PQS}=70^{\circ} ;$ $\mathrm{m} \angle \mathrm{PQR}=(14 \mathrm{x}-44)^{\circ} ; \mathrm{m} \angle \mathrm{RQS}=5 \mathrm{x}^{\circ}$	A. Substitution	
2. $\mathrm{m} \angle \mathrm{PQR}+\mathrm{m} \angle \mathrm{RQS}=\mathrm{m} \angle \mathrm{PQS}$		B. Simplify
3. $(14 \mathrm{x}-44)+5 \mathrm{x}=70$		C. Division Prop.
$4.19 \mathrm{x}-44=70$		D. Given
$5 . \quad 19 \mathrm{x}=119$		E. Addition Prop.
$6 . \quad \mathrm{x}=6$	F. Angle Addition Postulate	

Practice 6: Given: $\angle \mathrm{ABC}$ and $\angle \mathrm{CBD}$ are complementary $\angle \mathrm{DBE}$ and $\angle \mathrm{CBD}$ form a right angle \quad Prove: $\angle \mathrm{ABC} \cong \angle \mathrm{DBE}$
\underbrace{A}_{B}

Statement	Reason
1.	1.
$2 . \angle \mathrm{DBE}$ and $\angle \mathrm{CBD}$ are complementary	2.
3.	3.

Practice 7: Given: $\overrightarrow{A T}$ bisects $\angle \mathrm{SAX}$;
$\mathrm{m} \angle \mathrm{SAT}=(6 \mathrm{x}-4) ; \mathrm{m} \angle \mathrm{TAX}=(2 \mathrm{x}+28)$
Prove: $\mathrm{x}=8$

Sketch:

Statement	Reason
1.	1.
2.	2. Definition of an angle bisector
3.	3.
4.	4.
5.	5.
6.	6.
7.	7.

Practice 8: Given: $p \perp m \quad$ Prove: $\mathrm{x}=16$

$$
\mathrm{m} \angle 1=(4 \mathrm{x}+26)^{\circ}
$$

$p \stackrel{1}{\longleftrightarrow}$	Statement	Reason
	1. $p \perp m$	1. Given
	2. ___ is a right angle	2.
	3. $\mathrm{m} \angle 1=$	3.
	4.	4.
	5.	5.
	6.	6.

