Recall the three properties of equality and congruence that we have done so far:

1) The ___ property says that a number or a segment, angle, etc. is equal to itself (i.e., $a=a$)
2) In the \qquad property, the numbers, segments, angles, etc., switch places across the equal or the congruence sign. For example: $\mathrm{A}=\mathrm{B}$; therefore, $\mathrm{B}=\mathrm{A}$.
3) The \qquad property requires at least two statements, and the elements in the center of the statements are the same. Those elements are eliminated, and we end up joining the first and the last parts of the statements.

Here is a list of other properties of equality:

Name of property	Definition	You may just write...	Explanation in words	Example
Addition Property of Equality	If $\mathrm{a}=\mathrm{b}$, then $\mathrm{a}+\mathrm{c}=$ $\mathrm{b}+\mathrm{c}$.	Addition	You add the same amount on both sides of the equation.	
Subtraction Property of Equality	If $a=b$, then $a-c=$ $\mathrm{b}-\mathrm{c}$.	Subtraction	You subtract the same number from both sides of the equation.	
Multiplication Property of Equality	If $\mathrm{a}=\mathrm{b}$, then $\mathrm{a} * \mathrm{c}=$ $\mathrm{b} * \mathrm{c}$.	Multiplication	You multiply by the same number on both sides of the equation.	
Division Property of Equality	If $\mathrm{a}=\mathrm{b}$, then $\mathrm{a} / \mathrm{c}=$ b/c.	Division	You divide by the same number on both sides of the equation.	
Substitution Property of Equality	If $a=b$, then you may replace b with a in any expression.	Substitution	You replace a variable, measure, angle, etc. by another one that is equivalent to it. The alternate value will take the place of the one being replaced.	
Commutative Property of Addition or Multiplication	$\begin{aligned} & \mathrm{a}+\mathrm{b}=\mathrm{b}+\mathrm{a} ; \mathrm{a} * \mathrm{~b}= \\ & \mathrm{b} * \mathrm{a} \end{aligned}$	Commutative property	The numbers being added or multiplied are moved around.	
Associative Property of Addition or multiplication	$\begin{aligned} & (a+b)+c=a+(b+ \\ & c) ;(a * b) * c= \\ & a *(b * c) \end{aligned}$	Associative property	The numbers or variables stay in the same place, but the parenthesis moves.	
Distributive Property	$a(b+c)=a^{*} b+a * c$	Distributive property	The number outside the parenthesis is multiplied by all numbers inside the parenthesis.	
Identity property of addition or multiplication	$a+0=a ; b^{*} 1=b$	Identity property	You add 0 or multiply by 1 (which does not change the value of the original number)	
Inverse property of addition or multiplication	$a+(-a)=0 ; b^{*}(1 / b)=1$	Inverse property	You add the opposite to a number, and you end up with 0 (the additive identity), or you multiply a number by its reciprocal (where you flip a fraction), and you get 1 (the multiplicative identity).	
Multiplication property of zero	$\mathrm{a}^{*} 0=0$	Zero property	Any number multiplied by 0 is equal to 0 .	

Example 1: Write the letter of each property next to its definition.

1. If $a=b$, then $b=a$
A. Addition Property of Equality
2. If $a=b$, then $a c=b c$ \qquad B. Subtraction Property of Equality
3. $\overline{A B}=\overline{A B}$
C. Multiplication Property of Equality
4. $a=a$
D. Division Property of Equality
5. If $a=b$, then $a+c=b+c$
E. Reflexive Property of Equality
6. If $a(b+c)=a b+a c$ \qquad F. Symmetric Property of Equality
7. If $a=b$ and $b=c$, then $a=c$
G. Transitive Property of Equality
8. If $\angle P \cong \angle Q$, then $\angle Q \cong \angle P$
H. Substitution Property of Equality
9. If $\angle A \cong \angle B$ and $\angle B \cong \angle C$, then $\angle A \cong \angle C$ \qquad I. Distributive Property
10. If $a=b$, and $c \neq 0$, then $\frac{a}{c}=\frac{b}{c}$ \qquad J. Reflexive Property of Congruence
11. If $a=b$, then b can be substituted for a \qquad K. Symmetric Property of Congruence
12. If $a=b$, then $a-c=b-c$ \qquad L. Transitive Property of Congruence

Practice 1: Match the name to the definition
(1) \square distributive property
(A) $a=a$
(2) \qquad reflexive property
(B) if $a=b$ then $a x=b x$
(3) \square commutative property of addition
(4) \square multiplicative identity
(C) $a b=b a$

\square multiplicative property of equality
(D) if $a=b$ then $a+x=b+x$
(E) $a(b+c)=a b+a c$
(5)
(F) $x+0=x$
(6) \square associative property of
(G) $\quad 1 x=x$ multiplication
(H) $a+b=b+a$
(7) \square associative property of addition
(I) $(-a)(-b)=a b$
(8) \square commutative property of multiplication
(J) if $a=b$ and $b=c$ then $a=c$
(K) $\quad(a b)^{n}=a^{n} b^{n}$
(9) \qquad additive property of equality
(L) $(-a) b=a(-b)=-a b$
(10) \qquad transitive property of equality
(M) $(a b) c=a(b c)$
(11) \square additive identity
(N) $(a+b)+c=a+(b+c)$
\ldots for all a, b, c, x and n

Example 2: Identify the illustrated property:

1) if $x=5$ then $3 x=3(5)=15$ \qquad
2) if $\mathrm{a}=\mathrm{b}$ then $\mathrm{a}-8=\mathrm{b}-8$ \qquad
3) if $a=b$ then $a(4)=b(4)$ \qquad
4) if $\mathrm{b}=5 \mathrm{a}$ and $\mathrm{b}+8=24$ then 5 a can be substituted for b to get $5 \mathrm{a}+8=24$ \qquad
5) if $a=b$ then $a+3=b+3$ \qquad
6) if $a=b$ then $a / 2=b / 2$ \qquad
7) if $x=a$ and $4 a+6=12$ then x can be substituted for a to get $4 x+6=12$ \qquad

Practice 2: Identify the illustrated property:

1. $x+y=y+x$
2. $k+0=k$
3. $3 t+2 r=2 r+3 t$
4. $6(u+2 v)=6 u+12 v$
5. $0=100 \cdot 0$
6. $(2 a+3 b)+4 c=2 a+(3 b+4 c)$
7. $g x=x g$
8. $15 c+15 d=15(c+d)$
9. $0+b=b$
10. If $x+y=3$, then $3=x+y$
11. $x=x$
12. $4 \cdot 1=4$
13. $1 \cdot y=y$
14. $6=6$

Example 3: Write the name of the property that justifies the step to the left of the blanks given:
$2 x-14=x+1$
$2 x-14-x=x+1-x$
$x-14=1$
$x-14+14=1+14$ \qquad
$x=15$
Practice 3: Write the name of the property that justifies the step to the left of the blanks given:

$\begin{aligned} f+4 & =-6 \\ (f+4)-4 & =(-6)-4 \end{aligned}$	
$\begin{aligned} \mathrm{f}+4-4 & =-6-4 \\ \mathrm{f}+0 & =-10 \end{aligned}$	
A)	$f=-10$
	$x+12=5$
B) $\begin{aligned} & x+12-12=5-12 \\ & \text { B } x=-7\end{aligned}$	
$3 y-12=0$	
$3 y-12+12=0+12$	
$3 y=12$	
C)	$\frac{\$ y}{\$}=\frac{12}{3}$
	$y=4$
$\begin{aligned} 2 w+12 & =40 \\ 2 w+12-12 & =40-12 \end{aligned}$	
$\begin{aligned} 2 w & =28 \\ 2 w \div 2 & =28 \div 2 \end{aligned}$	
D)	$w=14$

$a b(a+b)=(a b) a+(a b) b$ \qquad

$$
\begin{aligned}
& =a(a b)+(a b) b \\
& =(a \cdot a) b+a(b \cdot b) \\
& =a^{2} b+a b^{2}
\end{aligned}
$$

