Question

When a figure is enlarged, how are corresponding angles related? How are corresponding lengths related?

Explore

Photo 1 is an enlargement of Photo 2.Use a ruler to find the length of $\overline{A B}$ in each photo. Then use a calculator to find the ratio of $A B$ in Photo 1 to $A B$ in Photo 2. Round to the nearest tenth.
(2) Use a protractor to find $m \angle 1$ in each photo. Then find the ratio of $m \angle 1$ in Photo 1 to $m \angle 1$ in Photo 2.
(3) Continue finding measurements in the photos and record your results in a table like the one shown below.

Photo 1

Measurement	Photo 1	Photo 2	Ratio
$A B$			
$A F$			
$C D$			
$m \angle 1$			
$m \angle 2$			

Photo 2

1) Make a conjecture about the relationship between corresponding lengths when a figure is enlarged.
2) Make a conjecture about the relationship between corresponding angles when a figure is enlarged.
3) Suppose an angle in Photo 2 has a measure of 35°. What is the measure of the corresponding angle in Photo 1 ?
4) Challenge: Suppose a segment in Photo 1 is 5 centimeters long. What is the measure of the corresponding segment in Photo 2?
