Triangle Inequality Theorem

- The sum of the lengths any two sides of a triangle is \qquad than the length of the third side.

In order to determine whether three given measures could form a triangle, all we have to do is to \qquad the smaller numbers. If the sum is \qquad than the third number, then the measures could work.

Example 1: Determine if the given measures can be the lengths of the sides of a triangle.

- 3, 4, 6 _
$6,9,15$
- $8,8,8$ \qquad $4,8,16$

Practice 1: Determine if the given measures can be lengths of the sides of a triangle.
A) $5,12,13$ \qquad C) $15,30,40$ \qquad E) 2, 2, 4 \qquad
B) 1, 2, 3 \qquad
D) $17,18,19$ \qquad F) $2,4,5$ \qquad

If we are given two measures, and we need to find the possible measure of the third side of a triangle, we could find the range by \qquad and \qquad both numbers. The \qquad is the minimum possible measure, and the \qquad is the maximum possible measure. Those numbers, however, are not part of the solution. In other words, the range would look like $\mathrm{d}<x<\mathrm{s}$.

Example 2: Determine the range for the measure of the third side given the measures of two sides of a triangle.

- 8 and 14 \qquad 12 and 18
- 1.5 and 5.5 \qquad 80 and 8 \qquad

Practice 2: Determine the range for the measure of the third side given the following measures.
A) 7 and 12 \qquad D) 100 and 200 \qquad
B) 9 and 14 \qquad E) 19 and 35 \qquad
C) 1 and 2 \qquad F) 40 and 41 \qquad

Focus on Geometry
Inequalities involving two triangles

SAS Inequality Theorem (Hinge Theorem)

If 2 sides of one triangle are \cong to 2 sides of another triangle, and the included angle of the first triangle is larger than the included angle of the $2^{\text {nd }}$ triangle, then the $3^{\text {rd }}$ side of the first triangle is longer than the $3^{\text {rd }}$ side of the second triangle.

Example 3: Write an inequality for the given pair of segment measures.

$M R, R P$

EG, HK

Practice 3: Write an inequality for the given pairs of segment measures.

$M R, P R$
A)

B)

C)

YP__ PZ
LM \qquad NO
EH \qquad HF

SSS Inequality Theorem (Converse Hinge Theorem)

If 2 sides of one triangle are \cong to 2 sides of another triangle, and the $3^{\text {rd }}$ side of the first triangle is longer than the $3^{\text {rd }}$ side of the $2^{\text {nd }}$ triangle, then the included angle of the $1^{\text {st }}$ triangle is larger than the included angle of the $2^{\text {nd }}$ triangle.

$$
m \angle \mathrm{~A}>m \angle \mathrm{~B}
$$

Example 4: Write an inequality for the given pair of angle measures.

$m \angle C, m \angle Z$

$m \angle A B D, m \angle C B D$

$m \angle X Y W, m \angle W Y Z$

Practice 4: Write an inequality to describe the possible values of x.
A)

$\mathrm{m} \angle \mathrm{F}$ \qquad $\mathrm{m} \angle \mathrm{C}$

$\mathrm{m} \angle 1$ \qquad $\mathrm{m} \angle 2$
C)

$\mathrm{m} \angle \mathrm{CAB}$ \qquad $\mathrm{m} \angle \mathrm{BAD}$

