Focus on Geometry

4N4: Triangle Inequalities

Triangle Inequality Theorem

• The sum of the lengths any two sides of a triangle is ______ than the length of the third side.

Example 1: Determine if the given measures can be the lengths of the sides of a triangle.

- 3, 4, 6 ____ 6, 9, 15 ____
- 8, 8, 8 ____ 4, 8, 16 ____

Practice 1: Determine if the given measures can be lengths of the sides of a triangle.

A) 5, 12, 13	C) 15, 30, 40	E) 2, 2, 4
B) 1, 2, 3	D) 17, 18, 19	F) 2,4,5

If we are given two measures, and we need to find the possible measure of the third side of a triangle, we could find the range by ______ and _____ both numbers. The ______ is the minimum possible measure, and the ______ is the maximum possible measure. Those numbers, however, are not part of the solution. In other words, the range would look like d < x < s.

Example 2: Determine the range for the measure of the third side given the measures of two sides of a triangle.

• 8 and 14 _____ 12 and 18 _____

• 1.5 and 5.5 _____ 80 and 8 _____

Practice 2: Determine the range for the measure of the third side given the following measures.

A) 7 and 12 _____ D) 100 and 200 _____

B) 9 and 14 _____

C) 1 and 2

F) 40 and 41 _____

E) 19 and 35 _____

Focus on Geometry

4N4: Triangle Inequalities

Inequalities involving two triangles

SAS Inequality Theorem (Hinge Theorem)

If 2 sides of one triangle are \cong to 2 sides of another triangle, and the included angle of the first triangle is larger than the included angle of the 2nd triangle, then the 3rd side of the first triangle is longer than the 3rd side of the second triangle.

Example 3: Write an inequality for the given pair of segment measures.

SSS Inequality Theorem (Converse Hinge Theorem)

If 2 sides of one triangle are \cong to 2 sides of another triangle, and the 3rd side of the first triangle is longer than the 3rd side of the 2nd triangle, then the included angle of the 1st triangle is larger than the included angle of the 2nd triangle.

 $m \angle A > m \angle B$

Example 4: Write an inequality for the given pair of angle measures.

 $m \angle C, m \angle Z$ $m \angle ABD, m \angle CBD$ **Practice 4**: Write an inequality to describe the possible values of x.

 $m \angle 1 __m \angle 2$

MR, PR

 $m \angle XYW, m \angle WYZ$

