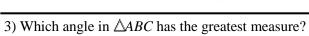

Unit 4 practice test, Fall 2015 Show your work where needed, and write your answer in the space provided. 1) Classify all three triangles by their angles.

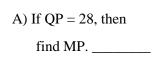
 ΔJLM is a ______. ΔJKL is a ______. ΔJKM is a _____

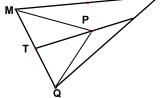
2) Name the longest side of $\triangle ABC$.

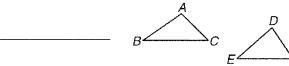


9) Indicate whether the following sets of numbers can be the lengths of the sides of a triangle by writing "yes" or "no" in the space provided, and explaining why or why not. Show your work.

A) 4, 4, 8 _____


B) 13, 7, 5 _____


C) 16, 7, 21 _____

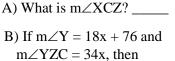


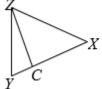
10) Segment TP is a <u>perpendicular bisector</u> of ΔMNQ below.

4) In the triangles below, if $\overline{AC} \cong \overline{DF}$, $\overline{AB} \cong \overline{ED}$, BC < EF, what can be concluded about m/A and m/D?

B) If TM = 3x - 8 and QT=7x - 2, then

find x. _____

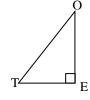

In #5 and 6, refer to the figure below.


5) Solve for *x*._____

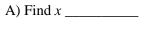
6) Find the measure of the exterior angle.

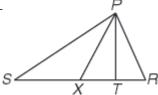
11) \overline{ZC} is an altitude of ΔZYX

find x. _____



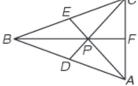
7) Using the figure below, and write an inequality using PQ and QR, if possible.


12) The two sides of a triangle are 5 feet and 9 feet long. Let *m* represents the measure of the third side. List a possible range for *m*.


8) Where do the altitudes of ΔTOE intersect?

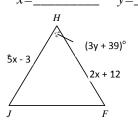
- 13) In the figure to the right,

 Find x B 2x + 6 5 4x 1
- 18) Given $\triangle CAT$ where $m\angle C = (5x 30)^{\circ}$, $m\angle A = 3x^{\circ}$, and $m\angle T = (2x + 45)^{\circ}$. Find: $x = \underline{\qquad} m\angle C = \underline{\qquad} m\angle A = \underline{\qquad} m\angle T = \underline{\qquad}$
- 14) \overline{PT} is an angle bisector of ΔPXR , m $\angle XPT=8x-23$, m $\angle TPR=33$, and m $\angle XTP=13x-1$

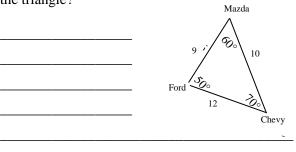


B) Is \overline{PT} an altitude? Explain why or why not.

19) \triangle ABC is isosceles, \angle A is the vertex angle, AB=x + 12, AC= 4x - 6, and BC= 2x + 10. Find: x _____ AB ____ AC ____ BC ____

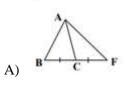

In #15-16,segments BF, EA and DC are the <u>medians</u> of \triangle ABC shown below.

15) If AB = 42, then find AD.

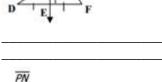


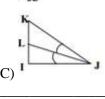
16) If BF = 48, and BP = 4x - 24, then find x. _____

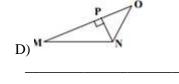
20) Triangle *FJH* is an equilateral triangle. Find: $x = \underline{\qquad} y = \underline{\qquad}$



17) A triangle is formed by three cars parked in a garage as shown in the figure. The distances shown are measured in yards. What is wrong with the labels on the triangle?


Extra credit) Name the special segment listed


HF



AC

